Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 39]
Диагонали трапеции
ABCD пересекаются в точке
O . Описанные
окружности треугольников
AOB и
COD пересекаются в точке
М на
основании
AD . Докажите, что треугольник
BMC равнобедренный.
|
|
Сложность: 3- Классы: 7,8,9
|
Школьный чемпионат по настольному теннису проводили по олимпийской системе. Победитель выиграл шесть партий. Сколько участников турнира выиграло игр больше, чем проиграло? (На турнире по олимпийской системе участников разбивают на пары. Те, кто проиграл игру в первом туре, выбывают. Тех, кто выиграл в первом туре, снова разбивают на пары. Те, кто проиграл во втором туре, выбывают и т. д. В каждом туре для каждого участника нашлась пара.)
|
|
Сложность: 3 Классы: 10,11
|
При каких значениях c числа sin α и cos α являются корнями квадратного уравнения 5x² – 3x + c = 0 (α – некоторый угол)?
|
|
Сложность: 3 Классы: 7,8,9,10
|
Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел.
Какое из оставшихся чисел стоит на сотом месте?
|
|
Сложность: 3 Классы: 7,8,9,10
|
Существуют ли нечётные целые числа х, у и z, удовлетворяющие равенству (x + y)² + (x + z)² = (y + z)²?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 39]