Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3 Классы: 5,6,7
|
У Кати и Маши расчёски одинаковой длины. У каждой расчёски все зубчики одинаковые, а расстояния между зубчиками равны ширине зубчика. В Катиной расчёске 11 зубчиков (см. рис.). Сколько зубчиков в Машиной расчёске, если они в пять раз уже зубчиков Катиной расчёски?
|
|
Сложность: 3 Классы: 5,6,7,8
|
Из прямоугольника 3×6 вырезали одну клетку (см. рис.). «Пришейте» эту клетку в другом месте так, чтобы получилась фигура, которую можно разрезать на две одинаковых.
|
|
Сложность: 3+ Классы: 6,7,8
|
В сумме
П,Я + Т,Ь + Д,Р + О,Б + Е,Й
все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно?
Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.
|
|
Сложность: 3+ Классы: 5,6,7,8
|
Миша сложил из восьми брусков куб (см. рис.). Все бруски имеют один и тот же объём, серые бруски одинаковые и белые бруски тоже одинаковые. Какую часть ребра куба составляют длина, ширина и высота белого бруска?
|
|
Сложность: 4 Классы: 6,7,8
|
В школе все ученики — отличники, хорошисты либо троечники. В круг встали 99 учеников. У каждого среди трёх соседей слева есть хотя бы один троечник, среди пяти соседей справа — хотя бы один отличник, а среди четырёх соседей — двух слева и двух справа — хотя бы один хорошист. Может ли в этом круге быть поровну отличников и троечников?
Страница: 1
2 >> [Всего задач: 6]