ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У нумизмата есть 100 одинаковых по внешнему виду монет. Он знает, что среди них 30 настоящих и 70 фальшивых монет. Кроме того, он знает, что массы всех настоящих монет одинаковы, а массы всех фальшивых – разные, причём каждая фальшивая монета тяжелее настоящей; однако точные массы монет неизвестны. Имеются двухчашечные весы без гирь, на которых можно за одно взвешивание сравнить массы двух групп, состоящих из одинакового числа монет. За какое наименьшее количество взвешиваний на этих весах нумизмат сможет гарантированно найти хотя бы одну настоящую монету?

   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 13]      



Задача 79343

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

Существуют ли  а) 6,  б)15,  в) 1000 таких различных натуральных чисел, что для любых двух a и b из них сумма  a + b  делится на разность  a − b?

Прислать комментарий     Решение

Задача 79345

Темы:   [ Рекуррентные соотношения ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4
Классы: 10,11

Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство  P(x) > x.  Определим последовательность {bn} следующим образом:  b1 = 1,  bk+1 = P(bk)  для  k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что  P(x) = x + 1.

Прислать комментарий     Решение

Задача 79340

Темы:   [ Выпуклые многоугольники ]
[ Объединение, пересечение и разность множеств ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
[ Комбинаторная геометрия (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Найти наименьшее n такое, что любой выпуклый 100-угольник можно получить в виде пересечения n треугольников. Докажите, что для меньших n это можно сделать не с любым выпуклым 100-угольником.
Прислать комментарий     Решение


Страница: << 1 2 3 [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .