ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Гусаров М.

Найти два шестизначных числа такие, что если их приписать друг к другу, то полученное двенадцатизначное число делится на произведение двух исходных чисел. Найти все такие пары чисел.

Вниз   Решение


Средняя линия, параллельная стороне AC треугольника ABC, равна половине стороны AB. Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Докажите, что если 1<a<b<c , то

log a(log a b)+log b (log b c)+log c(log ca)>0.

Вверх   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 391]      



Задача 102802

Темы:   [ Задачи на работу ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3-
Классы: 7,8

48 кузнецов должны подковать 60 лошадей. Какое наименьшее время они затратят на работу, если каждый кузнец тратит на одну подкову 5 минут?

Прислать комментарий     Решение

Задача 102804

Темы:   [ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 7,8

Докажите, что среди любых 11 чисел найдутся два, разность которых делится на десять.
Прислать комментарий     Решение


Задача 102809

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8

На доске написано число 12. В течение каждой минуты число либо умножают, либо делят либо на 2, либо на 3, и результат записывают на доску вместо исходного числа. Докажите, что число, которое будет написано на доске ровно через час, не будет равно 54.

Прислать комментарий     Решение

Задача 102857

Тема:   [ Геометрическая прогрессия ]
Сложность: 3-
Классы: 7,8

Найти сумму 1 + 2002 + 20022 + ... + 2002n.
Прислать комментарий     Решение


Задача 102880

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 6,7,8

Какое максимальное число ферзей, не бьющих друг друга, можно расставить на шахматной доске 8×8?

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .