Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 32]
Задача
108218
(#02.4.11.7)
|
|
Сложность: 5+ Классы: 9,10,11
|
Дан выпуклый четырёхугольник
ABCD , и проведены биссектрисы
lA ,
lB ,
lC ,
lD внешних углов этого четырёхугольника.
Прямые
lA и
lB пересекаются в точке
K , прямые
lB и
lC – в точке
L , прямые
lC и
lD – в точке
M ,
прямые
lD и
lA – в точке
N . Докажите, что если окружности,
описанные около треугольников
ABK и
CDM , касаются внешним образом,
то и окружности, описанные около треугольников
BCL и
DAN , касаются
внешним образом.
Задача
110092
(#02.4.11.8)
|
|
Сложность: 4 Классы: 9,10,11
|
На отрезке [0, N] отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок [0, N], целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки A и B, что расстояние между ними кратно 3, то можно разделить отрезок AB на три равных части, отметить одну из точек деления и стереть одну из точек A, B. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка [0, N]?
Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 32]