|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подисточники:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Велосипедист путешествует по кольцевой дороге, двигаясь в одном направлении. Каждый день он проезжает 71 км и останавливается ночевать на обочине. На дороге есть аномальная зона длины 71 км. Если велосипедист останавливается в ней на ночлег на расстоянии y км от одной границы зоны, просыпается он в противоположном месте зоны, на расстоянии y км от другой её границы. Докажите, что в каком бы месте велосипедист ни начал своё путешествие, рано или поздно он остановится в нём на ночлег или же в нём проснётся. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]
Доказать, что 7 + 7² + ... + 74K, где K – любое натуральное число, делится на 400.
Доказать, что остаток от деления простого числа на 30 – простое число или единица.
Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный.
равно 2, если 1<= a <= 2 , и равно 2
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|