|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите равенства а) F2n + 1 = Fn2 + Fn + 12; б) Fn + 1Fn + 2 - FnFn + 3 = (- 1)n + 1; в) F3n = Fn3 + Fn + 13 - Fn - 13. |
Страница: << 1 2 3 4 5 [Всего задач: 22]
Известно, что многочлен (x + 1)n – 1 делится на некоторый многочлен P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0 чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на k + 1.
Страница: << 1 2 3 4 5 [Всего задач: 22] |
||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|