Страница: 1
2 >> [Всего задач: 7]
Задача
109838
(#06.5.11.1)
|
|
Сложность: 5 Классы: 10,11
|
Докажите, что
sin< при
0
<x< .
Задача
109839
(#06.5.11.2)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Сумма и произведение двух чисто периодических десятичных дробей –
чисто периодические дроби с периодом T.
Докажите, что исходные дроби имеют периоды не больше T.
Задача
109840
(#06.5.11.3)
|
|
Сложность: 5+ Классы: 8,9,10,11
|
В клетчатом прямоугольнике 49×69 отмечены все
50
· 70
вершин клеток. Двое играют в следующую игру:
каждым своим ходом каждый игрок соединяет две точки отрезком,
при этом одна точка не может являться концом двух проведенных отрезков.
Отрезки могут содержать общие точки.
Отрезки проводятся до тех пор, пока точки не кончатся.
Если после этого первый может выбрать на всех проведенных отрезках направления
так, что сумма всех полученных векторов равна нулевому вектору, то он выигрывает, иначе выигрывает
второй. Кто выигрывает при правильной игре?
Задача
109841
(#06.5.11.4)
|
|
Сложность: 4 Классы: 9,10,11
|
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.
Задача
109842
(#06.5.11.5)
|
|
Сложность: 4 Классы: 1,2
|
Последовательности положительных чисел (xn) и (yn) удовлетворяют условиям при всех натуральных n. Докажите, что если все числа x1, x2, y1, y2 больше 1, то xn > yn при каком-нибудь натуральном n.
Страница: 1
2 >> [Всего задач: 7]