ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подисточники:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ключом шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера n×n а) Есть 10 монет. Известно, что одна из них фальшивая (по
весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь
определить фальшивую монету?
Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера. Какие остатки могут получиться при делении n³ + 3 на n + 1 при натуральном n > 2? |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 132]
Дан равносторонний треугольник ABC. Найти множество всех таких точек D, что треугольники ABD и BCD - равнобедренные (отрезки AB и BC могут служить как основаниями, так и боковыми сторонами).
Найти такие числа A,B,C,a,b,c , чтобы имело место тождество
Зная, что x2+x+1=0 , определить x14+1/x14 .
Решить систему уравнений
На плоскости задано n точек. Известно, что среди любых трёх из них имеются две, расстояние между которыми не больше 1. Доказать, что на плоскость можно наложить два круга радиуса 1, которые закроют все эти точки.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 132]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке