ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Дидин М.

Петя загадал положительную несократимую дробь $x = \frac{m}{n}$. За один ход Вася называет положительную несократимую дробь $y$, не превосходящую 1, и Петя в ответ сообщает Васе числитель несократимой дроби, равной сумме $x+y$. Как Васе за два хода гарантированно узнать $x$?

Вниз   Решение


Может ли число n! оканчиваться цифрами 19760...0?

ВверхВниз   Решение


На биссектрисе угла A треугольника ABC взята точка A1 так, что  AA1 = p - a = (b + c - a)/2, и через точку A1 проведена прямая la, перпендикулярная биссектрисе. Если аналогично провести прямые lb и lc, то треугольник ABC разобьется на части, среди которых четыре треугольника. Докажите, что площадь одного из этих треугольников равна сумме площадей трех других.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 108216  (#02.4.10.6)

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Средняя линия трапеции ]
[ Центральная симметрия (прочее) ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
Сложность: 4+
Классы: 9,10,11

Пусть точка A' лежит на одной из сторон трапеции ABCD , причём прямая AA' делит площадь трапеции пополам. Точки B' , C' и D' определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников ABCD и A'B'C'D' симметричны относительно середины средней линии трапеции ABCD .
Прислать комментарий     Решение


Задача 110098  (#02.4.10.7)

Темы:   [ Процессы и операции ]
[ Системы точек ]
[ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 4+
Классы: 8,9,10

На отрезке  [0, 2002]  отмечены его концы и  n – 1 > 0  целых точек так, что длины отрезков, на которые разбился отрезок  [0, 2002],  взаимно просты в совокупности. Разрешается разделить любой отрезок с отмеченными концами на n равных частей и отметить точки деления, если они все целые. (Точку можно отметить второй раз, при этом она остаётся отмеченной.) Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

Прислать комментарий     Решение

Задача 110099  (#02.4.10.8)

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
Сложность: 4+
Классы: 8,9,10

Автор: Храмцов Д.

В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .