ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Семь лыжников с номерами 1, 2, ... , 7 ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Оказалось, что каждый лыжник ровно дважды участвовал в обгонах. (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.) По окончании забега должен быть составлен протокол, состоящий из номеров лыжников в порядке финиширования. Докажите, что в забеге с описанными свойствами может получиться не более двух различных протоколов. Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что f(1) + f(2) = 10 и |
Страница: 1 [Всего задач: 4]
Сколько существует натуральных чисел, меньших тысячи, которые не делятся ни на 5, ни на 7?
В пространстве даны точки O1, O2, O3 и точка A. Точка A симметрично отражается относительно точки O1, полученная точка A1 -- относительно O2, полученная точка A2 — относительно O3. Получаем некоторую точку A3, которую также последовательно отражаем относительно O1, O2, O3. Доказать, что полученная точка совпадает с A.
На сколько частей могут разделить пространство n плоскостей?
Построить треугольник по основанию, высоте и разности углов при основании.
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке