Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 39]
|
|
Сложность: 3 Классы: 7,8,9
|
Том Сойер взялся покрасить очень длинный забор, соблюдая
условие: любые две доски, между которыми ровно две, ровно три или
ровно пять досок, должны быть окрашены в разные цвета. Какое
наименьшее количество красок потребуется Тому для этой работы?
В треугольнике АВС медиана ВМ в два раза меньше стороны АВ и образует с ней угол 40°. Найдите угол АВС.
|
|
Сложность: 3 Классы: 7,8,9
|
Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона
которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав?
|
|
Сложность: 3 Классы: 5,6,7
|
Какие цифры могут стоять на месте букв в примере AB·C = DE, если различными буквами обозначены различные цифры и слева
направо цифры записаны в порядке возрастания?
|
|
Сложность: 3 Классы: 5,6,7,8
|
Из пункта
А в пункт
В вышел пешеход. Одновременно с ним из
В в
А выехал велосипедист. Через час пешеход оказался ровно посередине между пунктом
А и велосипедистом. Ещё через 15 минут они встретились, и каждый продолжил свой путь.
Сколько времени потратил пешеход на путь из
А до
В? (Скорости пешехода и велосипедиста постоянны.)
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 39]