ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Изначально на экране компьютера – какое-то простое число. Каждую секунду число на экране заменяется на число, полученное из предыдущего прибавлением его последней цифры, увеличенной на 1. Через какое наибольшее время на экране возникнет составное число?

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 7526]      



Задача 35695

Темы:   [ Теорема синусов ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 2+
Классы: 9

В окружность вписаны две равнобедренные трапеции с соответственно параллельными сторонами. Докажите, что диагональ одной из них равна диагонали другой трапеции.

Прислать комментарий     Решение

Задача 35703

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8

У Вани работает 10 сотрудников. Каждый месяц Ваня повышает зарплату на 1 рубль ровно девятерым (по своему выбору).
Как Ване повышать зарплаты, чтобы сделать их одинаковыми? (Зарплата – целое число рублей.)

Прислать комментарий     Решение

Задача 35704

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 2+
Классы: 6,7,8

Расположите на плоскости шесть прямых и отметьте на них семь точек так, чтобы на каждой прямой было отмечено три точки.

Прислать комментарий     Решение

Задача 35709

Темы:   [ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 7,8,9

Существуют ли несколько невыпуклых многоугольников, из которых можно составить выпуклый?
Прислать комментарий     Решение


Задача 35765

Темы:   [ Степень вершины ]
[ Комбинаторная геометрия (прочее) ]
[ Остовы многогранных фигур ]
Сложность: 2+
Классы: 8,9

Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .