Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]
|
|
Сложность: 3+ Классы: 7,8,9
|
AL – биссектриса треугольника ABC, K – такая точка на стороне AC, что CK = CL. Прямая KL и биссектриса угла B пересекаются в точке P.
Докажите, что AP = PL.
|
|
Сложность: 3+ Классы: 7,8,9
|
Какое наибольшее количество клеток можно отметить на шахматной доске так, чтобы с каждой из них на любую другую отмеченную клетку можно было пройти ровно двумя ходами шахматного коня?
|
|
Сложность: 3+ Классы: 10,11
|
Известно, что A – наибольшее из чисел, являющихся произведением нескольких натуральных чисел, сумма которых равна 2011.
На какую наибольшую степень тройки делится число A?
|
|
Сложность: 3+ Классы: 10,11
|
Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой?
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]