|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан треугольник $ABC$ с прямым углом $C$. Точки $K$, $L$, $M$ – середины сторон $AB$, $BC$, $CA$ соответственно, $N$ – точка на стороне $AB$. Прямая $CN$ пересекает $KM$ и $KL$ в точках $P$ и $Q$. Точки $S$, $T$ на сторонах $AC$, $BC$ таковы, что четырехугольники $APQS$, $BPQT$ – вписанные. Докажите, что а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке; б) если $CN$ – высота, то $ST$ проходит через середину $ML$. |
Страница: 1 2 >> [Всего задач: 6]
Можно ли подобрать такие два натуральных числа X и Y, что Y получается из X перестановкой цифр, и X + Y = 9...9 (1111 девяток)?
В окружность вписаны две равнобочные трапеции так, что каждая сторона одной
трапеции параллельна некоторой стороне другой.
Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?
Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|