ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Разменный автомат меняет одну монету на пять других. Можно ли с его помощью разменять металлический рубль на 26 монет?
Диагонали AC и BD четырёхугольника ABCD пересекаются в точке O. Периметр треугольника ABC равен периметру треугольника ABD, а периметр треугольника ACD – периметру треугольника BCD. Докажите, что AO = BO.
В круге радиуса R даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.
В прямоугольном треугольнике ABC с равными катетами AC и BC на
стороне AC как на диаметре построена окружность, пересекающая
сторону AB в точке M. Найдите расстояние от вершины B до центра
этой окружности, если
BM =
|
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 559]
В ряд выписаны числа 1, 2, 3, ..., n. За один ход разрешается поменять местами любые два числа.
Дана некоторая тройка чисел. С любыми двумя из них разрешается проделывать следующее: если эти числа равны a и b, то их можно заменить на
Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.
Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n.
Верно ли, что два графа изоморфны, если
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 559]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке