ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 180]      



Задача 31254  (#24)

Темы:   [ Арифметика остатков (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 6,7,8

a1 = a2 = 1,  an+1 = anan–1 + 1.  Доказать, что an не делится на 4.

Прислать комментарий     Решение

Задача 31255  (#25)

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 4-
Классы: 6,7,8

Доказать, что
  а) Степень двойки не может оканчиваться на четыре одинаковых цифры.
  б) Квадрат не может состоять из одинаковых цифр (если он не однозначный).
  в) Квадрат не может оканчиваться на четыре одинаковых цифры.

Прислать комментарий     Решение

Задача 31256  (#26)

Темы:   [ Арифметика остатков (прочее) ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 6,7,8

Доказать, что n-е простое число больше 3n при  n > 12.

Прислать комментарий     Решение

Задача 78029  (#27)

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

2n = 10a + b.  Доказать, что если  n > 3,  то ab делится на 6.  (n, a и b – целые числа,  b < 10.)

Прислать комментарий     Решение

Задача 60459  (#28)

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Докажите, что множество простых чисел вида  p = 4k + 3  бесконечно.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .