|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Аксиома индукции. Если известно, что некоторое утверждение верно для 1, и из предположения, что утверждение верно для некоторого n, вытекает его справедливость для n+1, то это утверждение верно для всех натуральных чисел. Докажите, что аксиома индукции равносильна любому из следующих утверждений: 1) всякое непустое подмножество натуральных чисел содержит наименьшее число; 2) всякое конечное непустое подмножество натуральных чисел содержит наибольшее число; 3) если некоторое множество натуральных чисел содержит 1 и вместе с каждым натуральным числом содержит следующее за ним, то оно содержит все натуральные числа; 4) если известно, что некоторое утверждение верно для некоторого a, и из предположения, что утверждение верно для всех натуральных чисел k, таких, что a 5) (Обратная индукция.) Если известно, что некоторое утверждение верно для 1 и 2, и из предположения, что утверждение верно для некоторого n > 1, вытекает его справедливость для 2n и n - 1, то это утверждение верно для всех натуральных чисел. Окружность, вписанная в треугольник ABC, касается сторон BC, CA, AB в точках A1, B1, C1 соответственно. Точки A2, B2, C2 – середины дуг BAC, CBA, ACB описанной окружности треугольника ABC. Докажите, что прямые A1A2, B1B2 и C1C2 пересекаются в одной точке. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим).
12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|