|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дана правильная четырёхугольная пирамида SABCD ( S – вершина) со стороной основания a и боковым ребром b ( b > a ). Сфера с центром в точке O лежит над плоскостью основания ABCD , касается этой плоскости в точке A и, кроме того, касается бокового ребра SB . Найдите объём пирамиды OABCD . В четырёхугольнике $ABCD$ известно, что $AB=BC=CD$, $\angle A = 70^\circ$ и $\angle B = 100^\circ$. Чему могут быть равны углы $C$ и $D$? |
Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 7526]
Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!.
Один раз рыбак забросил в пруд сеть и вытащил 30 рыб. Пометив каждую рыбу меткой, он выпустил улов обратно в пруд. На следующий день рыбак снова забросил сеть и вытащил 40 рыб, среди которых были две помеченные. Как по этим данным приблизительно вычислить число рыб в пруду?
Существуют ли четыре подряд идущих натуральных числа, каждое из которых является степенью (большей 1) другого натурального числа?
Внутри выпуклого многоугольника расположены две точки.
Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 7526] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|