Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Найдите радиус и координаты центра окружности, заданной уравнением

                               а) (x - 3) 2 + (y + 2)2 = 16;

                               б) x2 + y2 - 2(x - 3y) - 15 = 0;

                               в) x2 + y2 = x + y + $ {\frac{1}{2}}$.

Вниз   Решение


От вершины C равнобедренного треугольника ABC с основанием AB, отложены равные отрезки: CA1 на стороне CA, и CB1 на стороне CB.
Докажите равенство треугольников:
  1) CAB1 и CBA1;
  2) ABB1 и BAA1.

ВверхВниз   Решение


На окружности длины 15 выбрано n точек, так что для каждой имеется ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояние измеряется по окружности). Докажите, что n делится на 10.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 57563

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4+
Классы: 9

В городе 10 улиц, параллельных друг другу, и 10 улиц, пересекающих их под прямым углом. Какое наименьшее число поворотов может иметь замкнутый автобусный маршрут, проходящий через все перекрестки?
Прислать комментарий     Решение


Задача 57564

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4+
Классы: 9

Чему равно наибольшее число клеток шахматной доски размером 8×8, которые можно разрезать одной прямой?
Прислать комментарий     Решение


Задача 57565

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 5
Классы: 9

Какое наибольшее число точек можно поместить на отрезке длиной 1 так, чтобы на любом отрезке длиной d, содержащемся в этом отрезке, лежало не больше 1 + 1000d2 точек?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .