|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В равные углы X1OY и YOX2 вписаны окружности ω1 и ω2, касающиеся сторон OX1 и OX2 в точках A1 и A2 соответственно, а стороны OY – в точках B1 и B2. C1 – вторая точка пересечения A1B2 и ω1, а C2 – вторая точка пересечения A2B1 и ω2. Докажите, что C1C2 – общая касательная к окружностям. Известно, что среди нескольких купюр, номиналы которых – попарно различные натуральные числа, есть ровно $N$ фальшивых. Детектор за одну проверку определяет сумму номиналов всех настоящих купюр, входящих в выбранный нами набор. Докажите, что за $N$ проверок можно найти все фальшивые купюры, если а) $N = 2$; б) $N = 3$. |
Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 7526]
Боковая сторона равнобедренной трапеции равна 41, высота равна 40 и средняя линия равна 45. Найдите основания.
Докажите, что в прямоугольной трапеции разность квадратов диагоналей равна разности квадратов оснований.
В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны
Периметр параллелограмма равен 90, а острый угол равен 60$deg;. Диагональ параллелограмма делит его тупой угол на части в отношении 1 : 3. Найдите стороны параллелограмма.
В равнобедренном треугольнике угол при вершине равен α, а площадь равна S. Найдите основание.
Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 7526] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|