ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 6702]      



Задача 53924

Темы:   [ Диаметр, основные свойства ]
[ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Две хорды окружности взаимно перпендикулярны.
Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

Прислать комментарий     Решение

Задача 53939

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.

Прислать комментарий     Решение

Задача 53940

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3-
Классы: 8,9

Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите углы треугольника.

Прислать комментарий     Решение

Задача 53962

Темы:   [ Признаки и свойства касательной ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3-
Классы: 8,9

Расстояние от точки M до центра O окружности равно диаметру этой окружности. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.

Прислать комментарий     Решение

Задача 53975

Темы:   [ Построение треугольников по различным элементам ]
[ Признаки и свойства касательной ]
Сложность: 3-
Классы: 8,9

Постройте треугольник, если известны отрезки, на которые вписанная окружность делит его сторону, и радиус вписанной окружности.

Прислать комментарий     Решение


Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .