ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.

Вниз   Решение


В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 7526]      



Задача 54205

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 2
Классы: 8,9

Катеты прямоугольного треугольника равны 12 и 16. Найдите высоту, проведённую из вершины прямого угла.

Прислать комментарий     Решение

Задача 54657

Темы:   [ Признаки подобия ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 2
Классы: 8,9

Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника.

Прислать комментарий     Решение

Задача 54751

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Необычные построения (прочее) ]
Сложность: 2
Классы: 8,9

На линейке отмечены три деления: 0, 2 и 5. Как отложить с её помощью отрезок, равный 6?

Прислать комментарий     Решение

Задача 54774

Темы:   [ Необычные построения (прочее) ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2
Классы: 8,9

Имеется угольник с углом в 40°. Как с его помощью построить угол, равный:
 а) 80°;   б) 160°;   в) 20°?

Прислать комментарий     Решение

Задача 55146

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 2
Классы: 8,9

У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .