Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

К кабинке канатной дороги, ведущей на гору, подошли четыре человека, которые весят 50, 60, 70 и 90 кг. Смотрителя нет, а в автоматическом режиме кабинка ездит туда-сюда только с грузом от 100 до 250 кг (в частности, пустой она не ездит), при условии, что пассажиров можно рассадить на две скамьи так, чтобы веса на скамьях отличались не более, чем на 25 кг. Каким образом все они смогут подняться на гору?

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 58296

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 8,9

Существует ли треугольник, у которого все высоты меньше 1 см, а площадь больше 1  м2?
Прислать комментарий     Решение


Задача 58297

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 8,9

В выпуклом четырехугольнике ABCD равны стороны AB и CD и углы A и C. Обязательно ли этот четырехугольник параллелограмм?
Прислать комментарий     Решение


Задача 58306

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Арена цирка освещается n различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно?

Прислать комментарий     Решение

Задача 58298

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4+
Классы: 8,9

Список упорядоченных в порядке возрастания длин сторон и диагоналей одного выпуклого четырехугольника совпадает с таким же списком для другого четырехугольника. Обязательно ли эти четырехугольники равны?
Прислать комментарий     Решение


Задача 58299

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9

Пусть n$ \ge$3. Существуют ли n точек, не лежащих на одной прямой, попарные расстояния между которыми иррациональны, а площади всех треугольников с вершинами в них рациональны?
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .