ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Два равных диска насажены на одну ось. На окружности каждого из них по кругу на одинаковых расстояниях в произвольном порядке расставлены числа 1, 2, 3, ..., 20. Всегда ли можно повернуть один диск относительно другого так, чтобы никакие два одинаковых числа не стояли друг против друга?

Вниз   Решение


Предположим, что имеется набор функций  f1(x), ...,  fn(x), определённых на отрезке  [a, b].  Докажите неравенство:

ВверхВниз   Решение


Сколько цифр у числа 21000?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 57416

Тема:   [ Неравенства с высотами ]
Сложность: 2
Классы: 8,9

Докажите, что в любом треугольнике сумма длин высот меньше периметра.
Прислать комментарий     Решение


Задача 57417

Тема:   [ Неравенства с высотами ]
Сложность: 2+
Классы: 8,9

Две высоты треугольника больше 1. Докажите, что его площадь больше 1/2.
Прислать комментарий     Решение


Задача 57418

Тема:   [ Неравенства с высотами ]
Сложность: 3
Классы: 8,9

В треугольнике ABC высота AM не меньше BC, а высота BH не меньше AC. Найдите углы треугольника ABC.
Прислать комментарий     Решение


Задача 57419

Темы:   [ Неравенства с высотами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9

Докажите, что  $ {\frac{1}{2r}}$ < $ {\frac{1}{h_a}}$ + $ {\frac{1}{h_b}}$ < $ {\frac{1}{r}}$.
Прислать комментарий     Решение


Задача 57420

Тема:   [ Неравенства с высотами ]
Сложность: 3
Классы: 8,9

Докажите, что  ha + hb + hc $ \geq$ 9r.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .