ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.
  а) Нарисуйте такую ломаную, которая имеет наибольшее возможное число точек самопересечения.
  б) Докажите, что большего числа самопересечений такая ломаная не может иметь.

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 52355

Темы:   [ Правильный (равносторонний) треугольник ]
[ Теорема Птолемея ]
Сложность: 3+
Классы: 8,9,10

На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Докажите, что  AP = BP + CP.

Прислать комментарий     Решение

Задача 57933

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

Найдите геометрическое место точек M, лежащих внутри правильного треугольника ABC, для которых MA2 = MB2 + MC2.
Прислать комментарий     Решение


Задача 57934

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

Шестиугольник ABCDEF правильный, K и M — середины отрезков BD и EF. Докажите, что треугольник AMK правильный.
Прислать комментарий     Решение


Задача 57935

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

Пусть M и N — середины сторон CD и DE правильного шестиугольника ABCDEF, P — точка пересечения отрезков AM и BN.
а) Найдите величину угла между прямыми AM и BN.
б) Докажите, что SABP = SMDNP.
Прислать комментарий     Решение


Задача 57936

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

На сторонах AB и BC правильного треугольника ABC взяты точки M и N так, что MN| AC, E — середина отрезка AN, D — центр треугольника BMN. Найдите величины углов треугольника CDE.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .