ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Назовём точку внутри треугольника хорошей, если три проходящие через неё чевианы равны. В треугольнике ABC стороны AB и BC равны, а количество хороших точек нечётно. Чему оно может быть равно? Карлсон ест варенье вдвое быстрее, чем Малыш, а торт он ест втрое быстрее, чем Малыш.
а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга. В школе (где училось больше 5 учеников) подвели итоги учебного года. Выяснилось, что в каждом множестве из пяти и более учеников не менее 80% двоек, полученных этими учениками в течение года, поставлены не более чем 20% процентам учеников из этого множества. Докажите, что по крайней мере три четверти всех двоек, поставленных в школе, получил один ученик. Постройте треугольник по вершине A, центру O описанной окружности и точке Лемуана L. В турнире по гандболу участвуют 20 команд. После того как каждая команда сыграла с каждой по разу, оказалось, что количество очков у всех команд разное. После того как каждая команда сыграла с каждой по второму разу, количество очков у всех команд стало одинаковым. В гандболе за победу команда получает 2 очка, за ничью 1 очко, за поражение — 0 очков. Верно ли, что найдутся две команды, по разу выигравшие друг у друга? a, b и c - длины сторон произвольного треугольника. Докажите, что
a = y + z, b = x + z и c = x + y, где x, y и z — положительные числа.
|
Страница: 1 2 3 >> [Всего задач: 11]
Существует ли треугольник, у которого все высоты
меньше 1 см, а площадь больше 1
м2?
В выпуклом четырехугольнике ABCD равны стороны AB и CD
и углы A и C. Обязательно ли этот четырехугольник параллелограмм?
Арена цирка освещается n различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно?
Список упорядоченных в порядке возрастания длин
сторон и диагоналей одного выпуклого четырехугольника
совпадает с таким же списком для другого четырехугольника.
Обязательно ли эти четырехугольники равны?
Пусть n
Страница: 1 2 3 >> [Всего задач: 11]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке