|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи H – точка пересечения высот AA' и BB' остроугольного треугольника ABC. Прямая, перпендикулярная AB, пересекает эти высоты в точках D и E, а сторону AB – в точке P. Докажите, что ортоцентр треугольника DEH лежит на отрезке CP. |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]
Докажите неравенство 2m+n–2 ≥ mn, где m и n – натуральные числа.
Для каких n выполняются неравенства: а) n! > 2n; б) 2n > n².
Вычислите произведение
Страница: << 1 2 3 4 5 6 7 [Всего задач: 33] |
|||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|