ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 60306  (#01.033)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Докажите неравенство:  2n > n.

Прислать комментарий     Решение

Задача 60307  (#01.034)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение

Задача 60308  (#01.035)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Докажите неравенство   nn+1 > (n + 1)n  для натуральных  n > 2.

Прислать комментарий     Решение

Задача 60309  (#01.036)

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Индукция (прочее) ]
[ Неравенства с модулями ]
Сложность: 2
Классы: 8

Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа.
Прислать комментарий     Решение


Задача 60310  (#01.037)

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10,11

Докажите неравенство   ,   где x1, ..., xn – положительные числа.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .