ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан треугольник ABC. На сторонах AB, BC, CA взяты соответственно точки C1, A1, B1 так, что  AC1 : C1B = BA1 : A1C = CB1 : B1A = 1 : n.  На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2 так, что  A1C2 : C2B1 = B1A2 : A2C1 = C1B2 : B2A1 = n : 1.  Доказать, что  A2C2 || AC,  C2B2 || CB,   B2A2 || BA.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 22]      



Задача 58405

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 7
Классы: 9,10

Точки Z и W изогонально сопряжены относительно правильного треугольника. При инверсии относительно описанной окружности точки Z и W переходят в Z* и W*. Докажите, что середина отрезка Z*W* лежит на вписанной окружности.
Прислать комментарий     Решение


Задача 58406

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 7
Классы: 9,10

Точки Z и W изогонально сопряжены относительно правильного треугольника ABC с центром O; M — середина отрезка ZW. Докажите, что $ \angle$AOZ + $ \angle$AOW + $ \angle$AOM = n$ \pi$ (углы ориентированы).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .