ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи У кассира есть только 72-рублевые купюры, а у вас – только 105-рублевые (у обоих в неограниченном количестве). В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны Отрезки AC и BD пересекаются в точке O. Докажите равенство треугольников BAO и DCO, если известно, что ∠BAO = ∠DCO и AO = OC. В треугольнике ABC известно, что AB = 3, высота CD = Докажите, что в прямоугольной трапеции разность квадратов диагоналей равна разности квадратов оснований. По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально? |
Страница: 1 [Всего задач: 5]
В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что A1C·BC = B1C·AC.
В прямоугольном треугольнике ABC с прямым углом C проведена высота CH. Докажите, что AC² = AB·AH и CH² = AH·BH.
В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах.
Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2 : 1, считая от вершины.
На стороне BC треугольника ABC взята точка A1 так, что BA1 : A1C = 2 : 1. В каком отношении медиана CC1 делит отрезок AA1?
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке