|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Вдоль двух прямолинейных парковых аллеек посажены пять дубов — по три вдоль каждой аллеи. Где посадить шестой дуб так, чтобы можно было проложить еще две прямолинейные аллеи, вдоль каждой из которых росло бы тоже по три дуба? Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$. Для каждого действительного a построим на плоскости Opq корневую прямую a² + ap + q = 0. В ромб вписана окружность. На какие четыре части она делится точками касания сторон, если острый угол ромба равен 37o?
|
Страница: << 1 2 [Всего задач: 6]
Трапеция ABCD вписана в окружность w (AD || BC). Окружности, вписанные в треугольники ABC и ABD, касаются оснований трапеции BC и AD в точках P и Q соответственно. Точки X и Y – середины дуг BC и AD окружности w, не содержащих точек A и B соответственно. Докажите, что прямые XP и YQ пересекаются на окружности w.
Страница: << 1 2 [Всего задач: 6] |
||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|