Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что любое аффинное преобразование можно представить в виде композиции двух растяжений и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.

Вниз   Решение


Докажите, что треугольник ABC остроугольный тогда и только тогда, когда на его сторонах BC, CA и AB можно выбрать такие внутренние точки A1, B1 и C1, что  AA1 = BB1 = CC1.

ВверхВниз   Решение


Докажите, что треугольники с длинами сторон a, b, c и a1, b1, c1 подобны тогда и только тогда, когда  

ВверхВниз   Решение


Расстояние между серединами диагоналей трапеции равно 5 см, а ее боковые стороны имеют длины 6 см и 8 см. Найдите расстояние между серединами оснований.

Вверх   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 98015  (#М1189)

Темы:   [ Плоскость, разрезанная прямыми ]
[ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Автор: Фомин Д.

На плоскости дано N прямых  (N > 1),  никакие три из которых не пересекаются в одной точке и никакие две не параллельны. Докажите, что в частях, на которые эти прямые разбивают плоскость, можно расставить ненулевые целые числа, по модулю не превосходящие N, так, что суммы чисел по любую сторону от любой из данных прямых равны нулю.

Прислать комментарий     Решение

Задача 98006  (#М1190)

Темы:   [ Таблицы и турниры (прочее) ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 4
Классы: 7,8,9

а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
б) Докажите, что в таблице 2n×2n можно расставить  3n + 1  звёздочку так, что при вычеркивании любых n строк и любых n столбцов остаётся невычеркнутой хотя бы одна звёздочка.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .