ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 2]      



Задача 79564  (#М1184)

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательная раскраска (прочее) ]
[ Многогранные углы ]
Сложность: 5+
Классы: 10,11

На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается.
Прислать комментарий     Решение


Задача 79558  (#М1185)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Системы алгебраических нелинейных уравнений ]
[ Теорема синусов ]
Сложность: 5
Классы: 9,10,11

Найдите все положительные числа x1, x2, ..., x10, удовлетворяющие при всех  k = 1, 2,..., 10  условию   (x1 + ... + xk)(xk + ... + x10) = 1.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .