|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число a ≠ 1, и разрезать этот кусок в отношении 1 : a по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса? Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$. По кругу стоят 50 чисел (необязательно целых). Известно, что произведение любых 25 чисел отличается от произведения 25 остальных не более чем на 2. Докажите, что какие-то два соседних числа отличаются не более чем на 2. У реки живет племя Мумбо-Юмбо. Однажды со срочным известием в соседнее племя одновременно отправились молодой воин Мумбо и мудрый шаман Юмбо. Мумбо побежал со скоростью 11 км/ч к ближайшему хранилищу плотов и затем поплыл на плоту в соседнее племя. А Юмбо, не торопясь, со скоростью 6 км/ч, пошел к другому хранилищу плотов и поплыл в соседнее племя оттуда. В итоге Юмбо приплыл раньше чем Мумбо. Река прямолинейна, плоты плывут со скоростью течения. Эта скорость всюду одинакова и выражается целым числом км/ч, не меньшим 6. Каково наибольшее возможное её значение? |
Страница: 1 [Всего задач: 1]
Страница: 1 [Всего задач: 1] |
||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|