ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие? |
Страница: 1 2 >> [Всего задач: 10]
Расставьте в клетки квадрата 3×3 различные целые положительные числа, не большие 25, так, чтобы в любой паре соседних по стороне клеток одно число делилось на другое.
У Кати и Маши расчёски одинаковой длины. У каждой расчёски все зубчики одинаковые, а расстояния между зубчиками равны ширине зубчика. В Катиной расчёске 11 зубчиков (см. рис.). Сколько зубчиков в Машиной расчёске, если они в пять раз уже зубчиков Катиной расчёски?
Из прямоугольника 3×6 вырезали одну клетку (см. рис.). «Пришейте» эту клетку в другом месте так, чтобы получилась фигура, которую можно разрезать на две одинаковых.
Коля пришёл в музей современного искусства и увидел квадратную картину в раме необычной формы, состоящей из 21 равного треугольника. Коля заинтересовался, чему равны углы этих треугольников. Помогите ему их найти.
В сумме П,Я + Т,Ь + Д,Р + О,Б + Е,Й все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно? Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.
Страница: 1 2 >> [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке