ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Каждая точка числовой оси, координата которой – целое число, покрашена либо в красный, либо в синий цвет. Доказать, что найдётся цвет со следующим свойством: для каждого натурального числа k имеется бесконечно много точек этого цвета, координаты которых делятся на k. |
Страница: 1 [Всего задач: 3]
Даны числа 1, 2, 3, ..., 1000. Найдите наибольшее число m, обладающее таким свойством: какие бы m из данных чисел ни вычеркнуть, среди оставшихся 1000 – m чисел найдутся два, из которых одно делится на другое.
Докажите, что сумма площадей пяти треугольников,
образованных парами соседних сторон и соответствующими диагоналями
выпуклого пятиугольника, больше площади всего пятиугольника.
Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде ax + by, где x и y – целые неотрицательные числа.
Страница: 1 [Всего задач: 3]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке