ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В деревне живут N девушек и столько же юношей. Каждый юноша оценивает всех девушек числами от 1 до N (разных девушек – разными числами), а каждая из девушек аналогичным образом оценивает юношей. Устойчивым паросочетанием называется такое взаимно-однозначное соответствие между юношами и девушками, что для любых двух юношей Ю1 и Ю2 и соответствующих им девушек Д1 и Д2 выполняются следующие два условия: 
    1) либо Ю1 оценивает Д1 выше, чем Д2 , либо Д2 оценивает Ю2 выше, чем Ю1
    2) либо Ю2 оценивает Д2 выше, чем Д1 , либо Д1 оценивает Ю1 выше, чем Ю2.
Напишите программу, которая по заданным оценкам находит некоторое устойчивое паросочетание.

Входные данные

Первая строка входного файла содержит целое число N (1 ≤ N ≤ 200). В строках с номерами от 2 до N+1 находятся наборы из N чисел, которыми юноши с номерами от 1 до N оценивают девушек. В строках с номерами от N+2 до 2N+1 находятся наборы из N чисел, которыми девушки оценивают юношей. Числа в наборах разделяются пробелами.

Выходные данные

В выходной файл выведите номера девушек, соответствующих юношам с номерами от 1 до N по порядку. Числа должны быть разделены пробелами и/или символами перевода строки.

Пример входного файла

3
1 2 3
2 3 1
1 2 3
1 2 3
2 3 1
3 1 2

Пример выходного файла

3 2 1

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 83]      



Задача 30879  (#036)

Тема:   [ Неравенство Коши ]
Сложность: 2
Классы: 6,7

Докажите, что при  x ≥ 0  имеет место неравенство  

Прислать комментарий     Решение

Задача 30880  (#037)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Сумма двух неотрицательных чисел равна 10. Какое максимальное и какое минимальное значение может принимать сумма их квадратов?

Прислать комментарий     Решение

Задача 30881  (#038)

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10

Докажите неравенство Коши для пяти чисел, то есть докажите, что при   a, b, c , d e ≥ 0 имеет место неравенство

Прислать комментарий     Решение

Задача 30882  (#039)

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 4-
Классы: 9

Решите уравнение  a² + b² + c² + d² – ab – bc – cd – d + 2/5 = 0.

Прислать комментарий     Решение

Задача 30883  (#040)

Темы:   [ Неравенство Коши ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9

a + b = 1.  Каково максимальное значение величины ab?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .