ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 391]      



Задача 88333

Тема:   [ Ребусы ]
Сложность: 4-
Классы: 7,8,9

Шесть на два. Восстановите числовой пример на деление


Прислать комментарий     Решение

Задача 77894

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.

Прислать комментарий     Решение

Задача 88295

Тема:   [ Классические неравенства ]
Сложность: 4-
Классы: 7,8,9,10

Укажите какое-нибудь целое положительное n, при котором
  а)  1,001n > 10;
  б)  0,999n < 0,1.

Прислать комментарий     Решение

Задача 88308

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 7,8,9

В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли добиться, чтобы все числа делились  а) на 2;  б) на 3?

Прислать комментарий     Решение

Задача 88335

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9

Можно ли в кружочках расставить все цифры от 0 до 9 так, чтобы сумма трёх чисел по любому из шести отрезков была бы одной и той же?

Прислать комментарий     Решение

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .