ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Несколько прямых, никакие две из которых не параллельны, разрезают плоскость на части. Внутри одной из этих частей отметили точку A.
Докажите, что точка, лежащая с A по разные стороны от всех данных прямых, существует тогда и только тогда, когда часть, содержащая A, неограничена.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]      



Задача 30727  (#041)

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

Сколькими способами можно расположить в девяти лузах семь белых и два чёрных шара? Часть луз может быть пустой, а лузы считаются различными.

Прислать комментарий     Решение

Задача 30728  (#042)

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

Сколькими способами три человека могут разделить между собой шесть одинаковых яблок, один апельсин, одну сливу и один мандарин?

Прислать комментарий     Решение

Задача 30729  (#043)

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

Сколькими способами четыре чёрных шара, четыре белых шара и четыре синих шара можно разложить в шесть различных ящиков?

Прислать комментарий     Решение

Задача 30730  (#044)

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9

Общество из n членов выбирает из своего состава одного представителя.
  а) Сколькими способами может произойти открытое голосование, если каждый голосует за одного человека (быть может, и за себя)?
  б) Решите ту же задачу, если голосование – тайное, то есть учитывается лишь число голосов, поданных за каждого кандидата, и не учитывается, кто за кого голосовал персонально.

Прислать комментарий     Решение

Задача 30731  (#045)

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 3-
Классы: 8,9

Сколькими способами можно выложить в ряд пять красных, пять синих и пять зелёных шаров так, чтобы никакие два синих шара не лежали рядом?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .