ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Если на каждой грани выпуклого многогранника выбрать по точке и провести из этой точки направленный перпендикулярно соответствующей грани во внешнюю сторону вектор, длина которого равна площади этой грани, то сумма всех таких векторов окажется равна нулю. Докажите это.

Вниз   Решение


Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 108402  (#1)

Темы:   [ Инварианты ]
[ Шахматная раскраска ]
Сложность: 2+
Классы: 7,8,9

На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но
а) рубашкой вверх;
б) рубашкой вниз и вверх ногами?
Прислать комментарий     Решение


Задача 108403  (#2)

Темы:   [ Ориентированные графы ]
[ Деревья ]
[ Раскраски ]
[ Связность и разложение на связные компоненты ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9

Выбежав после уроков на двор, каждый школьник кинул снежком ровно в одного другого школьника.
Докажите, что всех учащихся можно разбить на три команды так, что члены одной команды друг в друга снежками не кидали.

Прислать комментарий     Решение

Задача 30292  (#3)

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 6,7

Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?

Прислать комментарий     Решение

Задача 108405  (#4)

Тема:   [ Процессы и операции ]
Сложность: 3
Классы: 7,8,9

С помощью волшебного банкомата можно поменять любую купюру на любое конечное число купюр меньшего достоинства. Получив 1000 франков одной бумажкой, сможете ли Вы каждый месяц платить квартплату? (Дело происходит в Швейцарии, где квартплата постоянна, а жизнь бесконечна.)
Прислать комментарий     Решение


Задача 108406  (#5)

Темы:   [ Инварианты ]
[ Процессы и операции ]
Сложность: 3
Классы: 7,8,9

На доске написаны числа 1 и 2. Каждый день научный консультант Выбегалло заменяет два написанных числа на их среднее арифметическое и среднее гармоническое.
а) Однажды одним из написанных чисел (каким — неизвестно) оказалось 941664/665857. Каким в этот момент было другое число?
б) Будет ли когда-нибудь написано число 35/24?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .