ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 78729

Темы:   [ Взвешивания ]
[ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8

В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.
Прислать комментарий     Решение


Задача 78733

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 8,9

На каждую чашку весов положили k гирь, занумерованных числами от 1 до k, причём левая чашка перевесила. Оказалось, что если поменять чашками любые две гири с одинаковыми номерами, то всегда либо правая чашка начинает перевешивать, либо чашки приходят в равновесие. При каких k это возможно?

Прислать комментарий     Решение

Задача 78740

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 10,11

Масса каждой из 19 гирь не больше 70 г и равна целому числу граммов. Доказать, что из этих гирь нельзя составить более 1230 различных по массе наборов.
Прислать комментарий     Решение


Задача 78742

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8,9

У числа 21970 зачеркнули его первую цифру и прибавили её к оставшемуся числу. С результатом проделали ту же операцию и т.д., до тех пор пока не получили десятизначное число. Доказать, что в этом числе есть две одинаковые цифры.

Прислать комментарий     Решение

Задача 78746

Тема:   [ Неравенство треугольника ]
Сложность: 3
Классы: 8,9

На окружности радиуса 1 отмечено 100 точек. Доказать, что на этой окружности можно найти такую точку, чтобы сумма расстояний от неё до всех отмеченных точек была больше 100.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .