ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 79346  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Кривые второго порядка ]
Сложность: 3+
Классы: 11

Можно ли на плоскости расположить бесконечное множество одинаковых кругов так, чтобы любая прямая пересекала не более двух кругов?
Прислать комментарий     Решение


Задача 79343  (#2)

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

Существуют ли  а) 6,  б)15,  в) 1000 таких различных натуральных чисел, что для любых двух a и b из них сумма  a + b  делится на разность  a − b?

Прислать комментарий     Решение

Задача 79341  (#3)

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
Сложность: 4
Классы: 9

В волейбольном турнире каждые две команды сыграли по одному матчу.
  а) Докажите, что если для каждых двух команд найдётся третья, которая выиграла у этих двух, то число команд не меньше семи.
  б) Постройте пример такого турнира семи команд.
  в) Докажите, что если для любых трёх команд найдётся такая, которая выиграла у этих трёх, то число команд не меньше 15.

Прислать комментарий     Решение

Задача 79347  (#4)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Четность и нечетность ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 11

Последовательность натуральных чисел {xn} строится по следующему правилу:  x1 = 2,  ...,  xn = [1,5xn–1].
Доказать, что последовательность  yn = (–1)xn  непериодическая.
Прислать комментарий     Решение


Задача 79345  (#5)

Темы:   [ Рекуррентные соотношения ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4
Классы: 10,11

Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство  P(x) > x.  Определим последовательность {bn} следующим образом:  b1 = 1,  bk+1 = P(bk)  для  k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что  P(x) = x + 1.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .