Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр две тысячи первого замечательного числа?

Вниз   Решение


Через центр окружности проведены еще четыре окружности, касающиеся данной (см. рис.). Сравните площади фигур, выделенных на рисунке черным и серым цветом соответственно.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 86507

Темы:   [ Задачи на движение ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 7,8

Рассмотрим все моменты времени, когда часовая и минутная стрелки часов лежат на одной прямой, образуя развёрнутый угол.
Найдутся ли среди таких прямых две взаимно перпендикулярные?

Прислать комментарий     Решение

Задача 86508

Темы:   [ Математическая логика (прочее) ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 2+
Классы: 8,9

Решая задачу:   "Какое значение принимает выражение  x2000 + x1999 + x1998 + 1000x1000 + 1000x999 + 1000x998 + 2000x³ + 2000x² + 2000x + 3000
(x – действительное число), если  x² + x + 1 = 0?",  Вася получил ответ 3000. Прав ли Вася?

Прислать комментарий     Решение

Задача 86510

Темы:   [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8,9

Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте?
Прислать комментарий     Решение


Задача 86512

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Неравенство треугольника (прочее) ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Биссектриса треугольника делит одну из его сторон на отрезки 3 см и 5 см. В каких границах изменяется периметр треугольника?

Прислать комментарий     Решение

Задача 86514

Темы:   [ Разложение на множители ]
[ Графики и ГМТ на координатной плоскости ]
[ Уравнения с модулями ]
Сложность: 2+
Классы: 8,9

На координатной плоскости изобразите все точки, координаты которых являются решениями уравнения:  y² – |y| = x² – |x|.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .