|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На каком расстоянии от сторон правильного шестиугольника находится центр окружности, описанной около данного шестиугольника, если известно, что хорда этой окружности, равная 3, удалена от её центра на расстояние, равное 0,5? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]
Имеется множество билетов с номерами от 1 до 30 (номера могут повторяться). Каждый из учеников вытянул один билет. Учитель может произвести следующую операцию: прочитать список из нескольких (возможно – одного) номеров и попросить их владельцев поднять руки. Сколько раз он должен проделать такую операцию, чтобы узнать номер каждого ученика? (Учеников не обязательно 30.)
Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
2000 яблок лежат в нескольких корзинах. Разрешается убирать корзины и
вынимать яблоки из корзин.
В клетки шахматной доски записаны числа от 1 до 64 (первая горизонталь нумеруется слева направо числами от 1 до 8, вторая от 9 до 16 и т. д.). Перед некоторыми числами поставлены плюсы, перед остальными – минусы, так что в каждой горизонтали и в каждой вертикали по четыре плюса и по четыре минуса. Докажите, что сумма всех чисел равна 0.
Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|