Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 36]
Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K.
Докажите, что прямая BK проходит через центр O описанной около треугольника ABC окружности.
|
|
Сложность: 4 Классы: 8,9,10
|
Можно ли покрыть плоскость окружностями так, чтобы через каждую точку
проходило ровно 1988 окружностей?
|
|
Сложность: 4 Классы: 7,8,9
|
Рассматривается последовательность слов из букв "A" и "B". Первое слово –
"A", второе – "B". k-е слово получается приписыванием к (k–2)-му слову справа (k–1)-го (так что начало последовательности имеет вид: "A", "B", "AB", "BAB", "ABBAB", ...). Может ли в последовательности встретиться "периодическое" слово, то есть слово, состоящее из нескольких (по меньшей мере двух) одинаковых кусков, идущих друг за другом, и только из них?
|
|
Сложность: 4 Классы: 8,9,10
|
P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.
|
|
Сложность: 4+ Классы: 8,9,10
|
Прямой угол разбит на бесконечное число квадратных клеток со стороной
единица. Будем рассматривать ряды клеток, параллельные сторонам угла
(вертикальные и горизонтальные ряды). Можно ли в каждую клетку записать натуральное число так, чтобы каждый вертикальный и каждый горизонтальный ряд клеток содержал все натуральные числа по одному разу?
Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 36]