|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Цены снижены на 20%. На сколько процентов больше можно купить товаров на ту же зарплату? Доска размером 2005×2005 разделена на квадратные клетки со стороной единица. Некоторые клетки доски в каком-то порядке занумерованы числами 1, 2, ... так, что на расстоянии, меньшем 10, от любой незанумерованной клетки найдется занумерованная клетка. Докажите, что найдутся две клетки на расстоянии, меньшем 150, которые занумерованы числами, различающимися более, чем на 23. (Расстояние между клетками – это расстояние между их центрами.) |
Страница: 1 2 3 4 >> [Всего задач: 16]
Докажите, что середины сторон произвольного четырёхугольника – вершины параллелограмма.
На стороне AD параллелограмма ABCD взята точка P так, что
AP : AD = 1 : n, Q – точка пересечения прямых AC и BP.
На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что AK² = LK·KM.
Одна из диагоналей вписанного в окружность четырёхугольника является диаметром.
На основании AD трапеции ABCD взята точка E так, что AE = BC. Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно.
Страница: 1 2 3 4 >> [Всего задач: 16] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|