Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

12 кузнецов должны подковать 15 лошадей. Каждый кузнец тратит на одну подкову 5 минут. Какое наименьшее время они должны потратить на работу? (Учтите, лошадь не может стоять на двух ногах.)

Вниз   Решение


Фабрика игрушек выпускает проволочные кубики, в вершинах которых расположены маленькие разноцветные шарики. По ГОСТу в каждом кубике должны быть использованы шарики всех восьми цветов (белого и семи цветов радуги). Сколько разных моделей кубиков может выпускать фабрика?

ВверхВниз   Решение


Автор: Фольклор

Найдите наименьшее натуральное значение n, при котором число n! делится на 990.

ВверхВниз   Решение


Домашнее задание. Повесьте ботинок со шнурками за боковую сторону стола (не за угол!) с помощью трех спичек.

ВверхВниз   Решение


Имеется пять звеньев цепи по три кольца в каждом.
Какое наименьшее число колец нужно расковать и сковать, чтобы соединить эти звенья в одну цепь?

ВверхВниз   Решение


Двойки по математике. В классе 25 учащихся. Из них 8 велосипедистов, 13 — в секции плавания, 17 — в лыжной секции. Ни один ученик не занимается в трех секциях. Все спортсмены учатся только на 4 и 5, не в пример 6 ученикам, имеющим тройки по математике. Сколько учеников имеет двойки по математике? Сколько велосипедистов занимается в секции плавания?

ВверхВниз   Решение


На плоскости даны 16 точек (см. рисунок).

  а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
  б) Покажите, что можно обойтись стиранием шести точек.
  в) Найдите минимальное число точек, которые достаточно стереть для этого.

ВверхВниз   Решение


Можно ли ходом коня обойти все клетки шахматной доски, начав с клетки а1, закончив в клетке h8 и на каждой клетке доски побывав ровно один раз?

ВверхВниз   Решение


В большую шкатулку положили 10 шкатулок поменьше. В каждую из вложенных шкатулок либо положили 10 еще поменьше, либо ничего не положили. В каждую из меньших опять положили или 10, или ни одной, и т.д. После этого оказалось ровно 2006 шкатулок с содержимым. Сколько пустых?

ВверхВниз   Решение


Точные квадраты. Доказать, что являются точными квадратами все числа вида 16; 1156; 111556 и т.д. (в середину предыдущего числа вставляется число 15).

Вверх   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 391]      



Задача 102820

Темы:   [ Эйлерова характеристика ]
[ Шахматная раскраска ]
Сложность: 2+
Классы: 6,7

Участок m×n. Прямоугольный участок размера m×n разбит на квадраты 1×1. Каждый квадрат является отдельным участком, соединенным калитками с соседними участками. При каких размерах участка можно обойти все квадратные участки, побывав в каждом по одному разу, и вернуться в первоначальный?
Прислать комментарий     Решение


Задача 102823

Тема:   [ Текстовые задачи ]
Сложность: 2+
Классы: 7

Двойки по математике. В классе 25 учащихся. Из них 8 велосипедистов, 13 — в секции плавания, 17 — в лыжной секции. Ни один ученик не занимается в трех секциях. Все спортсмены учатся только на 4 и 5, не в пример 6 ученикам, имеющим тройки по математике. Сколько учеников имеет двойки по математике? Сколько велосипедистов занимается в секции плавания?
Прислать комментарий     Решение


Задача 102826

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Модуль числа ]
Сложность: 2+
Классы: 7,8

Постройте график. Постройте график функции y = 3x + |5x − 10|.
Прислать комментарий     Решение


Задача 102831

Темы:   [ Последовательности ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 2+
Классы: 7,8

Точные квадраты. Доказать, что являются точными квадратами все числа вида 16; 1156; 111556 и т.д. (в середину предыдущего числа вставляется число 15).
Прислать комментарий     Решение


Задача 102847

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2+
Классы: 6,7,8

Вырезаем из прямоугольника. Из прямоугольника 13 × 7 вырежьте 15 прямоугольников 2 × 3.
Прислать комментарий     Решение


Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .