ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.

Вниз   Решение


Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
Рассматриваются углы не только между соседними, но и между любыми двумя лучами.

ВверхВниз   Решение


Вася задумал восемь клеток шахматной доски, никакие две из которых не лежат в одной строке или в одном столбце. За ход Петя выставляет на доску восемь ладей, не бьющих друг друга, а затем Вася указывает все ладьи, стоящие на задуманных клетках. Если количество ладей, указанных Васей на этом ходе, чётно (то есть 0, 2, 4, 6 или 8), то Петя выигрывает; иначе все фигуры снимаются с доски и Петя делает следующий ход. За какое наименьшее число ходов Петя сможет гарантированно выиграть?

ВверхВниз   Решение


Незнайка разрезал фигуру на трёхклеточные и четырёхклеточные уголки, нарисованные справа от неё. Сколько трёхклеточных уголков могло получиться?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 103872

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку.

Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.

Прислать комментарий     Решение


Задача 103879

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 8×8, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна — ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 36 клеток. Побейте его рекорд! (Жюри умеет закрашивать 42 клетки!)

Прислать комментарий     Решение


Задача 103869

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7,8

Решите ребус:  БАО×БА×Б = 2002.

Прислать комментарий     Решение

Задача 103870

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 6,7

Незнайка разрезал фигуру на трёхклеточные и четырёхклеточные уголки, нарисованные справа от неё. Сколько трёхклеточных уголков могло получиться?

Прислать комментарий     Решение


Задача 103875

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Ребусы ]
Сложность: 2+
Классы: 7,8

2002 год — год-палиндром, то есть одинаково читается справа налево и слева направо. Предыдущий год-палиндром был 11 лет назад (1991). Какое максимальное число годов-непалиндромов может идти подряд (между 1000 и 9999 годами)?

Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .