ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На острове Вопростров люди задают друг другу вопросы, на которые можно ответить лишь "да" или "нет". При этом каждый из них относится ровно к одному из племён A или B. Люди из племени A задают только те вопросы, на которые правильный ответ "да", а из племени B - те вопросы, на который правильный ответ "нет". В одном доме жила семейная пара Итан и Вайолет Рассел. Когда инспектор Кругг подошёл к дому, на пороге его встретил хозяин со словами: "Скажите, мы с Вайолет относимся к племени B?". Инспектор подумал и дал правильный ответ. Какой?

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 188]      



Задача 104004

Тема:   [ Разные задачи на разрезания ]
Сложность: 3
Классы: 7,8

У Кая имеется кусок шахматной доски 7×7 клеток из драгоценного хрусталя и алмазный нож. Кай хочет, не теряя материала и проводя разрезы только по краям клеток, распилить доску на 6 частей так, чтобы из них сделать три новых квадрата, все разных размеров. Как это сделать?
Прислать комментарий     Решение


Задача 104011

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 7,8,9

На острове Вопростров люди задают друг другу вопросы, на которые можно ответить лишь "да" или "нет". При этом каждый из них относится ровно к одному из племён A или B. Люди из племени A задают только те вопросы, на которые правильный ответ "да", а из племени B - те вопросы, на который правильный ответ "нет". В одном доме жила семейная пара Итан и Вайолет Рассел. Когда инспектор Кругг подошёл к дому, на пороге его встретил хозяин со словами: "Скажите, мы с Вайолет относимся к племени B?". Инспектор подумал и дал правильный ответ. Какой?
Прислать комментарий     Решение


Задача 104014

Тема:   [ Признаки делимости на 5 и 10 ]
Сложность: 3
Классы: 7,8

а) Олег перемножил какие-то семь подряд идущих чисел. Верно ли, что у него получилось число, оканчивающееся на ровно один ноль?
б) Саша решил перемножить первые 57 чисел:  1·2·...·56·57.  У него получилось число, оканчивающееся на 12 нулей. Правильно ли он всё вычислил?

Прислать комментарий     Решение

Задача 104016

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

На юбилей 57-й школы Московский Монетный Двор выпустил юбилейные монеты достоинством в 57 копеек. А на юбилей 239-й школы монеты достоинством в 239 копеек выпустил Санкт-Петербургский Монетный Двор. Чтобы никому не было обидно, количество денег, выпущенных оба раза, было одинаково. Смогут ли Олег и 36 его друзей разделить все выпущенные монеты так, чтобы каждому досталось одинаковое количество монет?

Прислать комментарий     Решение

Задача 104018

Темы:   [ Признаки делимости на 2 и 4 ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8

Дома у Олега есть сейф, но кода он не знает. Бабушка рассказала Олегу, что код состоит из 7 цифр – двоек и троек, причем двоек больше, чем троек. А дедушка – что код делится и на 3, и на 4. Сможет ли Олег с первой попытки открыть сейф?

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .